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Applicability of the hodograph method for the problem of long-scale nonlinear dynamics
of a thin vortex filament near a flat boundary

V. P. Ruban*
L.D. Landau Institute for Theoretical Physics, 2 Kosygin Street, 119334 Moscow, Russia

~Received 19 February 2003; published 9 June 2003!

Hamiltonian dynamics of a thin vortex filament in an ideal incompressible fluid near a flat fixed boundary is
considered under the conditions that at any point of the curve, determining the shape of the filament, the angle
between tangent vector and the boundary plane is small. Also the distance from a point on the curve to the
plane is small in comparison with the curvature radius. The dynamics is shown to be effectively described by
a nonlinear system of two~111!-dimensional partial differential equations. The hodograph transformation
reduces this system to a single linear differential equation of the second order with separable variables. Simple
solutions of the linear equation are investigated for real values of spectral parameterl, when the filament
projection on the boundary plane has shape of a two-branch spiral or a smoothed angle, depending on the sign
of l.
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I. INTRODUCTION

It is a well-known fact that the solutions of equatio
determining the motion of a homogeneous inviscid fluid p
sess a remarkable property—the lines of the vorticity fi
are frozen in@1–4#. Mathematical reason for this is the s
called relabeling symmetry of fluids that provides necess
conditions for applicability of the No¨ther theorem and result
in infinite number of the conservation laws@5–11#. Due to
this basic property, in an ideal hydrodynamics some flows
a considerably long time interval have the vorticity conce
trated in quasi-one-dimensional structures, vortex filame
that fill a small part of entire bulk of the fluid. The motion o
vortex filaments is a very interesting problem both from th
oretical and practical viewpoints, and is a classical subjec
hydrodynamics~see, for instance, Refs.@3,4,10–24#, and ref-
erences therein for various analytical and numerical
proaches to this problem!. In a general case an analytic
study in this field is highly complicated because of seve
reasons, the main of these being nonlocality and nonlinea
of governing equations of motion. A less significant troub
seems to be the necessity of some regularization proced
for the Hamiltonian functional~the total energy! of the sys-
tem in the limit of ‘‘infinitely thin’’ vortex filaments, since a
logarithmic divergency takes place in some observa
physical quantities~for instance, in the velocity of displace
ment of curved pieces of the filament! as the thickness de
creases. However, in few limit cases, the dynamics o
single vortex filament can turn out to be effectively int
grable. A known and very interesting example of such
integrable system is a slender nonstretched vortex filam
@in the boundless three-dimensional~3D! space filled by an
ideal fluid# in the so-called localized induction approxim
tion ~LIA !, when in the energy of the filament only logarith
mically large contributions from interaction of adjace
pieces are taken into account. In this approximation,
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Hamiltonian functional is simply proportional to the leng
of the filament, resulting in conservation of this quanti
Thus, application of the so-called Hasimoto transformat
@15,25# is appropriate and reduces the problem to~111!-
dimensional nonlinear Schro¨dinger equation, that is known
to be integrable by the inverse scattering method@26#.

In the present work, another integrable case in vortex
namics is recognized, the long-scale motion of a thin vor
filament near a flat fixed boundary. Mathematically, the pro
lem of a single filament in a half space is equivalent to
problem of two symmetric filaments in the boundless spa
which allows us to simplify some further calculations. O
immediate purpose will be to consider the configurations
the vortex filament which satisfy the following conditions.

~a! The angle is everywhere small between the tang
vector on the curve determining the shape of the filament
the boundary plane.

~b! The distance from an arbitrary point of the curve to t
plane is small in comparison with the curvature radius at
given point, but large in comparison with the thickness of t
filament.

~c! The filament projection on the boundary plane do
not have self-intersections or closely approaching one
another different pieces.

In these conditions, the system dynamics is known to
unstable~the so-called Crow instability@14#!, with the insta-
bility increment directly proportional to the wave number
~some small! long-scale perturbation of the filament shape
is a well-known fact that such a dependence of the increm
is usual for a class of local (232) partial differential sys-
tems that can be exactly linearized by the so-cal
hodograph transformation@1# exchanging dependent and in
dependent variables. This observation has served as a sig
cant reason to look for a natural local nonlinear approxim
tion in description of the long-scale dynamics of a vort
filament near a flat boundary and to examine the approxi
tion for applicability of the Hodograph method. As a result
consistent derivation of the corresponding local approxim
equations of motion has been performed. Also, the fact
been demonstrated that the nonlinear partial differential s
©2003 The American Physical Society01-1
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tem for two functionsr andq determining the shape of th
filament, and depending on the time momentt and on the
Cartesian coordinatex is reduced by the hodograph transfo
mation to a linear equation. Moreover, it is possible
choose a pair of new independent variables in such a ma
that in the linear partial differential equation for the functio
t(r,q), the coefficients will not depend onq variable. For
this purpose, it is convenient to definer variable as double
distance from a filament point to the boundary planey50,
while q variable will be the angle between thex direction
and the tangent to the filament projection on thex-z plane.
Obviously, an explicit dependence of the coefficients onq
will be absent due to the symmetry of the system with
spect to rotations in thex-z plane. Therefore, separation o
the variables will be possible and most simple solutions w
have the form

tl~r,q!5Re$Tl~r!Ql~q!%. ~1!

Here l is an arbitrary complex parameter and the comp
function Ql(q) satisfies the simple equation

Ql9~q!5lQl~q!. ~2!

To find the complex functionTl(r), it will be necessary to
solve some ordinary linear differential equations of the s
ond order with variable coefficients which will be consider
later in this paper. The corresponding geometrical configu
tions of the vortex filament strongly depend onl. In particu-
lar, it will be shown that the solutions~1! with real l,21
describe such a shape of the~moving! vortex filament that its
projection on thex-z plane has two asymptotes with th
angle between themDq5p(121/A2l), while in the case
l.0 the projection has the shape of a two-branch spiral~see
the figures!.

This paper is organized as follows. In Sec. II, a necess
review is given concerning the Hamiltonian formalis
adopted to the problem of frozen-in vorticity, since this a
proach is the most clear and compact way to treat id
flows. Then, approximate local equations of motion for
vortex filament near a flat boundary are derived. In Sec.
we demonstrate the applicability of the hodograph meth
and introduce variables that are most convenient for the
ticular problem. Section IV is devoted to investigation
simple solutions obtained by the separation of variables
the governing linear equation.

II. LONG-SCALE LOCAL APPROXIMATION

Existence itself of the ideal-hydrodynamic solutions in t
form of quasi-one-dimensional vortex structures~vortex fila-
ments! filling just a small part of the total fluid bulk is
closely connected with the freezing-in property of the vor
lines @1–13#. Mathematically, this property is expressed
the special form of the equation of motion for th
divergence-free vorticity fieldV(r,t)5curlv(r,t),

Vt5curl@v3V#, ~3!
06630
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where v(r,t) is the velocity field. Since in this article we
consider incompressible flows, we may write

v5curl21V5curl~2D!21V, ~4!

where D is the 3D Laplace operator. As it is known, th
action of the inverse nonlocal operatorD21 on an arbitrary
function f (r) is given by the following formula:

2D21f ~r!5E G~ ur2r1u! f ~r1!dr1 , ~5!

where

G~r !5
1

4pr

is the Green function of the (2D) operator in the boundles
space. The Hamiltonian noncanonical structure@7# of the
equations of an ideal incompressible hydrodynamics is ba
on the following relation

v5curlS dH
dVD , ~6!

where the Hamiltonian functionalH$V% is the kinetic energy
of a homogeneous incompressible fluid~with unit density!
expressed through the vorticity,

H$V%5
1

2E V•~2D!21Vdr. ~7!

Our approach to investigation of the vortex filament m
tion is based on the representation of the ideal homogene
fluid flows in terms of the frozen-in vortex lines, as d
scribed, for instance, in Refs.@10–13#. The special form~3!
of the equation of motion allows us to express the vortic
field V(r,t) in a self-consistent manner through the shape
the vortex lines~the so-called formalism of vortex lines!,

V~r,t !5E
N

d2n R d„r2R~n,j,t !…Rj~n,j,t !dj, ~8!

whered(•••) is the 3Dd-function,N is some 2D manifold
of labels enumerating the vortex lines (N is determined
by topological properties of a particular flow!, nPN is
a label of an individual vortex line, andj is an arbitrary
longitudinal parameter along the line. What is importa
is that the dynamics of the line shapeR(n,j,t)
5„X(n,j,t),Y(n,j,t),Z(n,j,t)… is determined by the varia
tional principle

dF E LdtG Y dR~n,j,t !50,

with the Lagrangian of the form

L5E
N

d2n R „@Rj3Rt#•D~R!…dj2HˆV$R%‰, ~9!

where the vector functionD(R) in the case of incompressibl
flows must satisfy the condition

„“R•D~R!…51. ~10!
1-2
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Below, we chooseD(R)5(0,Y,0).
Since we are going to deal with a very thin vortex fil

ment, we will neglect then dependence of the shapes
individual vortex lines constituting the filament. By doin
this step, we exclude from further consideration all the
fects related to finite variable cross section and longitud
flows inside the filament@16–20#. Thus, we consider an ‘‘in-
finitely narrow’’ vortex string with a shapeR(j,t) and with a
finite circulation G5*Nd2n. However, the Hamiltonian o
such a singular filament diverges logarithmically,

HG$R~j!%5
G2

8p R R R8~j1!•R8~j2!dj1dj2

uR~j1!2R~j2!u
→`.

~11!

In order to regularize this double integral, it is possible, a
variant, to modify the Green function@13#. For example,
instead of the singular functionG}1/r , one can use a
smooth function such asGa}1/Ar 21a2 or some other ap-
propriate expression depending on a parametera. It should
be emphasized that relationV5curl v is exactly satisfied
only in the original nonregularized system, but in the case
a finite a it is not valid for distances of ordera from the
singular vortex string. Thus, the meaning of vorticity in reg
larized models is not so simple, but, nevertheless, relation~6!
remains valid in any case. Relatively small parametera in
regularized models serves to imitate a finite width of vor
filament in the usual~nonregularized! hydrodynamics. The
energy of the string turns out to be logarithmically large,

HG$R~j!%'
G2

4p R uR8~j!u lnS L„R~j!…

a Ddj, ~12!

whereL(R) is a typical scale depending on a given proble
~in particular, the usual LIA usesL5 const@a). In our case
we consider two symmetric vortex filaments in the lon
scale limit, when direction of the tangent vector vari
weakly on a length of orderY. For such configurations, th
energy concentrated in the half spacey.0 is approximately
equal to the following expression:

H G'
G2

4p R AX821Y821Z82 ln~2Y/a!dj. ~13!

This local Hamiltonian is able to provide qualitatively co
rect dynamics of the filament down to longitudinal scales
order Y where perturbations become stable and where n
locality comes into play. Unfortunately, we do not have
simple method to treat the Hamiltonian~13! analytically, that
is why we will consider only very large scales (L@Y) and
thus, suppose the slope of the tangent vector to the boun
plane to be negligibly small~this meansY82!X821Z82).
Then, choosing a longitudinal parameterj as simply the Car-
tesian coordinatex, we have the following approximate La
grangian:

L'GE H 2YŻ2
G

4p
A11Z82ln~2Y/a!J dx, ~14!
06630
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where the functionsY andZ depend onx and t, Ż[] tZ and
Z8[]xZ. Having neglected the termY82 under the square
root, we sacrifice the correct behavior of perturbations w
wavelengths of the order ofY, but instead we obtain an ex
actly solvable system, as it will be shown below.

Let us say a few words about geometrical meaning of
second term in right-hand side of the expression~14!. Since
we study the very long-scale limit, locally the flow und
consideration looks almost like a two-dimensional flow w
a small vortex at the distanceY from the straight boundary
and the expression (G2/4p)ln(2Y/a) is just the energy of
such a 2D flow per unit length in the third~longitudinal!
direction, while the multiplierA11Z82 dx gives the arc-
length element in the longitudinal direction.

Now, for simplicity, we take new time and length scales
satisfy a51 and G/2p51. After that we introduce new
quantitiesr(x,t)52Y(x,t) andm(x,t)5]xZ(x,t), and also
the function

H~r,m!5F~r! A11m2, ~15!

where

F~r!5 ln r. ~16!

The corresponding equations of motion then can be writ
in the following remarkable general form:

m5]xZ, ~17!

] tr1]xHm~r,m!50, ~18!

] tZ1Hr~r,m!50. ~19!

More explicitly, the last two equations are

r t1
]

]x F F~r!Zx

A11Zx
2G50, ~20!

Zt1F8~r!A11Zx
250. ~21!

These equations have a simple geometrical treatment.
deed, Eq.~21! means if we consider the dynamics of th
filament projection on thex-z plane, then we see an eleme
of the projection moving in the normal to the projection ta
gent direction with the velocity depending only onr and
equal toF8(r). Simultaneously, iny direction the element of
the filament moves with the velocity proportional to thex-z
projection curvature multiplied by the functionF(r), as
shown in Eq.~20!.

It is interesting to note that an analogous considerat
can also give us the long-scale Hamiltonian equations
motion for a thin vortex filament in a slab of an ideal flu
between two parallel fixed boundaries aty52d/2 and y
51d/2. One has just to define ther variable by the formula
r5(p/d)y and make substitutionF(r)°F (e)(r), in Eq.
~15! where
1-3
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F (e)~r!5 lnS cosr

e D ~22!

with a small dimensionless parametere.

III. HODOGRAPH METHOD

It is important for our consideration that any nonline
system of the form~17!–~19! can be locally reduced to
linear equation if we taker andm as new independent var
ables ~this is known as the hodograph transformation!. As
interesting physical examples of systems solvable by
method, the one-dimensional gas-dynamic isentropic flo
should be mentioned@1#, with H(r,m)5rm2/21«(r),
wherer, m, and«(r) are the gas density, gas velocity, a
the internal energy density, respectively. Another exampl
a long-wave 1D approximation describing initial evolution
a liquid inviscid column under surface tension before
formation of drops@27#. The last case formally correspond
to «(r)}r1/2, with r(x,t) being the cross-section area of th
column.

Indeed, as from Eqs.~17! and ~19! we see the relation

dZ5m dx2Hr dt,

it is convenient to introduce the auxiliary functionx(r,m),

x5Z2xm1tHr , ~23!

in order to obtain

dx52x dm1tHrr dr1tHrm dm.

From the above expression, we easily derive

t5
xr

Hrr
, x5Hrm

xr

Hrr
2xm . ~24!

After that we rewrite Eq.~18! in the following form:

]~r,x!

]~ t,x!
2Hmr

]~r,t !

]~ t,x!
2Hmm

]~m,t !

]~ t,x!
50

and multiply it by the Jacobian](t,x)/](r,m),

]~r,x!

]~r,m!
2Hmr

]~r,t !

]~r,m!
2Hmm

]~m,t !

]~r,m!
50.

Thus, now we have

xm5Hmrtm2Hmmtr . ~25!

Substitution of relations~24! into this equation and subse
quent simplification give us the linear partial differenti
equation of the second order for the functionx(r,m),

~Hmmxr /Hrr!r2xmm50. ~26!

As the functionH(r,m) has the special form~15!, it is
convenient to change variables,
06630
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m5tanq, x~r,q!52
u~r,q!

cosq
, ~27!

whereq is the angle in thex-z plane betweenx direction and
the tangent to the corresponding projection of the vortex fi
ment. As a result, the relations~23! and~24! will be rewritten
in the following form

t52
ur

F9~r!
, ~28!

x5uq cosq1S u2
F8~r!

F9~r!
urD sinq, ~29!

Z5uq sinq2S u2
F8~r!

F9~r!
urD cosq, ~30!

and the coefficients of the linear equation for the functi
u(r,q) will not depend onq variable,

]

]r S F~r!

F9~r!
urD 2~uqq1u!50. ~31!

The same is true for the coefficients of the equation de
mining the functiont(r,q)52ur(r,q)/F9(r),

F~r!trr12F8~r!tr2F9~r!tqq50. ~32!

Once some particular solution of Eq.~31! is known, then
further procedure consists in the following two steps.

~i! In terms of some parameterj find the curves of con-
stant values of the functiont52ur(r,q)/F9(r). It is this
point where nonlinearity comes into play, since we need
solve the nonlinear equation.

~ii ! Substitute the obtained expressionsr5r(j,t) andq
5q(j,t) into Eqs.~29! and~30!, and get a complete descrip
tion of the filament motion,X5X(j,t), Z5Z(j,t), Y
5(1/2)r(j,t).

Thus, the long-scale local approximation~14! turns out to
be integrable in the sense that it can be reduced to thelinear
equation~31!. However, the functionu(r,q) is multivalued
in a general case. Therefore, statement of the Cauchy p
lem becomes much more complicated. Besides, the funct
F(r) and F (e)(r) determined by expressions~16! and ~22!
result inelliptic linear equations as against the usual 1D g
dynamics where the corresponding equations werehyper-
bolic. Generally speaking, the ellipticity makes the Cauc
problem ill posed in the mathematical sense if initial data
not very smooth. However, in this paper we will not discu
these questions, instead in the following section we w
present simple particular solutions, which within some tim
interval satisfy the applicability conditions for the long-sca
approximation.

IV. PARTICULAR SOLUTIONS

A. Separation of the variables

We are going to consider the simplest particular solutio
of Eq. ~31! obtainable by separation of the variables

ul~r,q!5Re$Ul~r!Ql~q!%, ~33!
1-4
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wherel is an arbitrary complex spectral parameter,

l5~¸1 ik !2, k>0, ~34!

and the functionQl(q) contains two arbitrary complex con
stantsCl

1 andCl
2 ,

Ql~q!5Cl
1exp@~¸1 ik !q#1Cl

2exp@2~¸1 ik !q#.
~35!

The motion of the vortex filament will be described by t
following formulas:

tl52ReH Ul8~r!

F9~r!
Ql~q!J , ~36!

xl5ReH Ul~r!Ql8~q!cosq

1S Ul~r!2
F8~r!

F9~r!
Ul8~r!D Ql~q!sinqJ , ~37!

Zl5ReH Ul~r!Ql8~q!sinq

2S Ul~r!2
F8~r!

F9~r!
Ul8~r!D Ql~q!cosqJ . ~38!

The function Ul(r) must satisfy the ordinary differentia
equation of the second order

d

dr S F~r!

F9~r!
Ul8~r!D 2~l11!Ul~r!50. ~39!

Let us turn a bit of attention to the special valuel521
of the spectral parameter, when the solution of Eq.~39! can
be explicitly written for any functionF(r),

U21~r!5A21ErF9~r1!dr1

F~r1!
1B21 , ~40!

whereA21 andB21 are arbitrary complex constants.
At lÞ21, it is convenient to deal with the function

Tl~r!52
Ul8~r!

F9~r!
, ~41!

which satisfies the equation

F~r!Tl9~r!12F8~r!Tl8~r!2lF9~r!Tl~r!50. ~42!

In particular, Eq.~42! is simply solvable atl50 ~this solu-
tion describes the motion of a perfect vortex ring!,

T0~r!5A0Er dr1

F2~r1!
1B0 . ~43!
06630
Simple manipulations with formulas~36!–~39! allow us
to rewrite the solutions in the following form

tl5Re$Tl~r!Ql~q!%, ~44!

xl5Rê ~l11!21$2@F~r!Tl~r!#8Ql8~q!cosq

1@lF8~r!Tl~r!2F~r!Tl8~r!#Ql~q!sinq%‰,

~45!

Zl5Rê ~l11!21$2@F~r!Tl~r!#8Ql8~q!sinq

2@lF8~r!Tl~r!2F~r!Tl8~r!#Ql~q!cosq%‰.

~46!

B. Real l

Let us first consider real values of the spectral parame
lPR, and the corresponding real functionsQl(q) and
Ul(r). SinceF(r).0, F9(r),0, we may expect the solu
tions Ul(r) with l@1 to have a large number of oscilla
tions. In the opposite case, whenl,21, the solutions will
be a linear combination of two functions, one of them bei
increasing, and other decreasing. It is sufficient to kn
these general properties to get an impression concerning
geometrical configurations of the vortex filament describ
by the formulas~44!–~46!. Let us takel52k2 with k.1
and suppose the explicit dependenceT2k2(r) to be known
and increasing at larger. For simplicity, we takeQ2k2(q)
5cos(kq) and after that resolve the relation~44! with respect
to q,

q56
1

k
arccosF t

T2k2~r!
G . ~47!

Substitution of this expression into formulas~45!–~46! gives
us the final form of the solutions as dependencesX2k2(r,t)
andZ2k2(r,t),

X2k2~r,t !56
k2F8~r!T2k2~r!1F~r!T2k28 ~r!

k221
F t

T2k2~r!
G

3sinS 1

k
arccosF t

T2k2~r!
G D

7
k@F~r!T2k2~r!#8

k221
F12

t2

T2k2
2

~r!
G 1/2

3cosS 1

k
arccosF t

T2k2~r!
G D , ~48!
1-5
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Z2k2~r,t !57
k2F8~r!T2k2~r!1F~r!T2k28 ~r!

k221
F t

T2k2~r!
G

3cosS 1

k
arccosF t

T2k2~r!
G D

7
k@F~r!T2k2~r!#8

k221
F12

t2

T2k2
2

~r!
G 1/2

3sinS 1

k
arccosF t

T2k2~r!
G D . ~49!

The r variable in the above expressions varies in the lim
from rmin(t), such thatt5T2k2(rmin), to 1`. The corre-
sponding curve in thex-z plane is a smoothed angleDq
5p(121/k) @see Figs. 1 and 2, where for the caseF(r)
5ln r the filament shape is shown at several time mome
tn112tn5 const]. Completely different form is obtained
l5¸2, two-branch spirals~see Fig. 3!. Let us takeQ¸2(q)
5exp(̧ q). Then,

q5
1

¸
lnF t

T¸2~r!
G , ~50!

FIG. 1. Solution forl529. With positiveG the vortex filament
gets closer to the wall, while for negativeG the filament moves
away from the boundary.
06630
s

s,

X¸2~r,t !5
t

T¸2~r!
H ¸2F8~r!T¸2~r!2F~r!T¸28 ~r!

¸211

3sinS 1

¸
lnF t

T¸2~r!
G D 2

¸@F~r!T¸2~r!#8

¸211

3cosS 1

¸
lnF t

T¸2~r!
G D J , ~51!

Z¸2~r,t !5
t

T¸2~r!
H 2

¸2F8~r!T¸2~r!2F~r!T¸28 ~r!

¸211

3cosS 1

¸
lnF t

T¸2~r!
G D 2

¸@F~r!T¸2~r!#8

¸211

3sinS 1

¸
lnF t

T¸2~r!
G D J . ~52!

The variabler runs here between two neighbor zeros
the functionT¸2(r) and approaches these values at two lo

FIG. 2. Solution forl5210, the same time moments as
Fig. 1.
1-6
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rithmic branches of the spiral,r j
(¸),r,r j 11

(¸) . It is interest-
ing to note that the features similar to such spirals as in F
3, typically develop in numerical simulations of vortex fila
ments~see, for example, Fig. 10 in the paper by Pumir a
Siggia @16#!.

C. The caseF „r…Ä ln r

For further investigation, let us substituteF(r)5 ln r into
Eqs.~36!–~39!, and change the variable

q5 ln r.

As a result, we will obtain the following:

tl5Re$eqUl8~q!Ql~q!%, ~53!

xl5Re$Ul~q!Ql8~q!cosq

1@Ul~q!1Ul8~q!#Ql~q!sinq%, ~54!

Zl5Re$Ul~q!Ql8~q!sinq

2@Ul~q!1Ul8~q!#Ql~q!cosq%, ~55!

FIG. 3. Two-branch spirals. The filament projection is presen
here for several negative time moments before a finite singula
or for positive time moments after an initial singularity, dependi
on the direction of the vorticity.
06630
g.

d

qUl9~q!1~11q!Ul8~q!1~11l!Ul~q!50. ~56!

General solution of Eq.~56! is representable by the Laplac
method @28# as an arbitrary linear combinationAlI l

A(q)
1BlI l

B(q) of two contour integrals in a complex plane,

Ul~q!5
Al

2p i RA
S p

p11D l11 epqdp

p

1BlEB
S p

p11D l11 epqdp

p
. ~57!

Here, the first closed contourA goes around the pointsp0
50 and p1521. The second contourB is not closed, at
positiveq it starts at Rep52`. If Rel,0, then contourB
ends atp1, but if Rel>0, then its end point will bep0. In
both cases, at the end point of the contourB, the integrand
multiplied by p(p11) tends to zero.

It is interesting to note that at the integer values of t
parameterl, the integralI l

A(q) can be expressed in terms o
polynomials:

I l
A~q!5

1

2p i RA
S p

p11D l11 epqdp

p

5H S 11
d

dqD ulu21 qulu21

(ulu21)!
, l521,22, . . . ;

e2qS d

dq
21D l ql

l!
, l50,1,2, . . . .

~58!

These expressions have been used to prepare Figs.
where the vortex filament shape corresponding toUl(q)
5I l

A(q) is drawn for several moments of time. It is easy
see that at sufficiently large times the spirals satisfy the c
ditions ~a!, ~b!, and ~c!, which have been formulated in th
Introduction. As to the angle-shaped configurations, the c
dition Y82!X821Z82, generally speaking, is not satisfied
q*k2, since at very largeq ~on the asymptotes of the angle!
the growth ofY@;exp(q)# is faster than growth ofX and
Z@;U2k2(q);qk221#. Therefore, if we take a particular so
lution u5U2k2(q)cos(kq) separately, not as a term in
more complex linear combination, then we have to deal o
with large k, and consider only the pieces of the filame
where 2. . . 3&q!k2.

D. The caseF „r…ÄraÕa

In Ref. @13#, we investigated another regularization of th
Hamiltonian functional which corresponds toF(r)5ra/a,
with some small positive parametera. That time we did not
see applicability of the hodograph method and therefore,
were able to find only few particular solutions. Now it ha
been made clear that in this case, a simple substitution e
that reduces the problem to 2D equationD2f 1 f 50. Thus, it
becomes possible to present a very wide class of solution
the equation

d
y,
1-7
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r2trr12artr1a~12a!tqq50 ~59!

as linear combinations of singular fundamental solutio
~which are expressed through the McDonald functionK0)
and regular exponential or polynomial solutions. Indeed,
the substitutions

r5eq, q5fAa~12a!, t5e(1/22a)qf ~q,f!,
~60!

Eq. ~59! is reduced to the following equation with constan
coefficients,

f qq1 f ff2~1/22a!2f 50. ~61!

As it is well known, the fundamental solutions of this equ
tion have the form

f ~q,f;q0 ,f0!5K0S U12 2aUA~q2q0!21~f2f0!2D ,

~62!

where q0 and f0 are arbitrary parameters. Therefore, E
~59! has particular solutions

t5r1/22aK0S U12 2aUAF ln
r

r0
G2

1
~q2q0!2

a~12a!
D . ~63!

It is interesting to note that ata51/2, the system pos
sesses a conformal symmetry. A deep reason of this sym
try is not clear yet.

As concerning separation of the variables, the funct
Tl(r) in Eqs.~44!–~46! is given by the expression

Tl~r!5Al
1rs1(l)1Al

2rs2(l), ~64!

where Al
6 are arbitrary constants. The complex expone

s6(l) are the roots of the quadratic equation
s

,

06630
s

y

-

.

e-

n

s

s~s21!12as1a~12a!l50. ~65!

Thus,

s6~l!51/22a6A~1/22a!22a~12a!l. ~66!

It should be mentioned that the solutions presented in R
@13# correspond to the particular casea1s52.

V. CONCLUSIONS

In this paper, an approximate exactly solvable nonlin
model has been derived to describe unstable locally quas
ideal flows with a thin vortex filament near a flat bounda
The Hodograph method has been applied and some par
lar solutions have been analytically found by separation
variables in the governing linear partial differential equati
for auxiliary functionu. More general solutionsu(r,q) can
be obtained as linear combinations of the terms~33! with
different l, but only in few cases will it be possible to re
solve analytically the dependencet52ur(r,q)/F9(r).
However, this procedure can be performed numerically.

Though we derived the exactly solvable model under s
eral restrictive simplifications, the solutions obtained in th
work promise benefit in many aspects. For instance, t
may serve as basic approximations in future for more
vanced analytical studies that will take into account the
fects of nonlocality and/or finite variable cross section of t
filament, as well as surface waves in the case of free bou
ary.
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