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Applicability of the hodograph method for the problem of long-scale nonlinear dynamics
of a thin vortex filament near a flat boundary
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Hamiltonian dynamics of a thin vortex filament in an ideal incompressible fluid near a flat fixed boundary is
considered under the conditions that at any point of the curve, determining the shape of the filament, the angle
between tangent vector and the boundary plane is small. Also the distance from a point on the curve to the
plane is small in comparison with the curvature radius. The dynamics is shown to be effectively described by
a nonlinear system of tw@¢l+1)-dimensional partial differential equations. The hodograph transformation
reduces this system to a single linear differential equation of the second order with separable variables. Simple
solutions of the linear equation are investigated for real values of spectral parametéren the filament
projection on the boundary plane has shape of a two-branch spiral or a smoothed angle, depending on the sign
of \.
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[. INTRODUCTION Hamiltonian functional is simply proportional to the length
of the filament, resulting in conservation of this quantity.
It is a well-known fact that the solutions of equations Thus, application of the so-called Hasimoto transformation
determining the motion of a homogeneous inviscid fluid pos{15,29 is appropriate and reduces the problem(ie-1)-
sess a remarkable property—the lines of the vorticity fielddimensional nonlinear Schdinger equation, that is known
are frozen in[1-4]. Mathematical reason for this is the so- to be integrable by the inverse scattering metf@f.
called relabeling symmetry of fluids that provides necessary N the present work, another integrable case in vortex dy-
conditions for applicability of the Ktber theorem and results Namics is recognized, the long-scale motion of a thin vortex
in infinite number of the conservation laf§—11. Due to filament near aflgt fixed poundary. Mathgmatlcglly, the prob-
this basic property, in an ideal hydrodynamics some flows ir{em of a single filament in a half space is equivalent to the

a considerably long time interval have the vorticity concen-prObIem of two symmetric filaments in the boundless space,

. g . . ) which allows us to simplify some further calculations. Our
trated in quasi-one-dimensional structures, vortex filaments plity

that fill a small part of entire bulk of the fluid. The motion of Immediate purpose will be to consider the configurations of

. : . ) the vortex filament which satisfy the following conditions.
vortex filaments is a very interesting problem both from the- (a) The angle is everywhere small between the tangent

oretical and practical vigwpoints, and is a classical subject o\f/ector on the curve determining the shape of the filament and
hydrodynamicgsee, for instance, Refs3,4,10-24, and ref- 4 boundary plane.
erences therein for various analytical and numerical ap- () The distance from an arbitrary point of the curve to the
proaches to this problemin a general case an analytical pjane is small in comparison with the curvature radius at the
study in this field is highly complicated because of SeVﬁ‘“’ﬂ‘Given point, but large in comparison with the thickness of the
reasons, the main of these being nonlocality and nonlinearit§jjament.
of governing equations of motion. A less significant trouble  (c) The filament projection on the boundary plane does
seems to be the necessity of some regularization procedur@st have self-intersections or closely approaching one-to-
for the Hamiltonian functiona(the total energyof the sys-  another different pieces.
tem in the limit of “infinitely thin” vortex filaments, since a In these conditions, the system dynamics is known to be
logarithmic divergency takes place in some observablaeinstablethe so-called Crow instabilitj14]), with the insta-
physical quantitiegfor instance, in the velocity of displace- bility increment directly proportional to the wave number of
ment of curved pieces of the filameéras the thickness de- (some sma)llong-scale perturbation of the filament shape. It
creases. However, in few limit cases, the dynamics of as a well-known fact that such a dependence of the increment
single vortex filament can turn out to be effectively inte-is usual for a class of local (22) partial differential sys-
grable. A known and very interesting example of such artems that can be exactly linearized by the so-called
integrable system is a slender nonstretched vortex filamertodograph transformatiord] exchanging dependent and in-
[in the boundless three-dimensior8D) space filled by an dependent variables. This observation has served as a signifi-
ideal fluid] in the so-called localized induction approxima- cant reason to look for a natural local nonlinear approxima-
tion (LIA), when in the energy of the filament only logarith- tion in description of the long-scale dynamics of a vortex
mically large contributions from interaction of adjacent flament near a flat boundary and to examine the approxima-
pieces are taken into account. In this approximation, theion for applicability of the Hodograph method. As a result, a
consistent derivation of the corresponding local approximate
equations of motion has been performed. Also, the fact has
*Email address: ruban@itp.ac.ru been demonstrated that the nonlinear partial differential sys-
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tem for two functionsp and J determining the shape of the wherew(r,t) is the velocity field. Since in this article we
filament, and depending on the time momergnd on the consider incompressible flows, we may write

Cartesian coordinateis reduced by the hodograph transfor- _ _

mation to a linear equation. Mgreover, itgis ppossible to v=curl lQ=curi(-4)"'Q, “)
choose a pair of new independent variables in such a mann@jere A is the 3D Laplace operator. As it is known, the
that in the linear partial differential equation for the function action of the inverse nonlocal operamrl on an arbitrary
t(p, ), the coefficients will not depend ofk variable. For  function f(r) is given by the following formula:

this purpose, it is convenient to defipevariable as double

d|sFance fro_m a f|Ia_1ment point to the boundary plgne_o, _Aflf(r):f G(|r—ry)f(ry)dry, (5)
while 9 variable will be the angle between thedirection

and the tangent to the filament projection on #ie plane.
Obviously, an explicit dependence of the coefficientstbn
will be absent due to the symmetry of the system with re-
spect to rotations in thg-z plane. Therefore, separation of

the variables will be possible and most simple solutions will ) )
have the form is the Green function of the{A) operator in the boundless

space. The Hamiltonian noncanonical struct{ir¢ of the
t (p.9)=ReT 0. (9. 1 equations of an ideal incompressible hydrodynamics is based
AP D) =RETA(P)ON(D)) @ on the following relation

where

1
G=Zmr

Here \ is an arbitrary complex parameter and the complex SOH
function ®, () satisfies the simple equation v=curll </, (6)

O)(9)=N0,(V). (2)  where the Hamiltonian function&t{€}} is the kinetic energy
of a homogeneous incompressible flligdith unit density

To find the complex functiof, (p), it will be necessary to expressed through the vorticity,

solve some ordinary linear differential equations of the sec- 1

ond order with variable coefficients which will be considered H{Q}=§J Q- (—A)"tQdr. (7)
later in this paper. The corresponding geometrical configura-

tions of the vortex filament strongly depend ®nin particu- Our approach to investigation of the vortex filament mo-

lar, it will be shown that the solutiondl) with realA<—1 tion is based on the representation of the ideal homogeneous
describe such a shape of tfreoving) vortex filament thatits  fluid flows in terms of the frozen-in vortex lines, as de-
projection on thex-z plane has two asymptotes with the scribed, for instance, in Refg10—13. The special forn(3)
angle between them 9= 7(1—1/\/—\), while in the case of the equation of motion allows us to express the vorticity
A >0 the projection has the shape of a two-branch spsed  field €(r,t) in a self-consistent manner through the shape of

the figures. the vortex lineqthe so-called formalism of vortex lings
This paper is organized as follows. In Sec. I, a necessary

review is given concerning the Hamiltonian formalism Q(r't):J d2y fﬁ S(r—R(v,£,D))R(v,£,1)dE,  (8)

adopted to the problem of frozen-in vorticity, since this ap- N

proach is the most clear and compact way to treat ideal

flows. Then, approximate local equations of motion for aWneres(---) is the 3Ds-function, \'is some 2D manifold

vortex filament near a flat boundary are derived. In Sec. 1110f [abels enumerating the vortex linesV(is determined

we demonstrate the applicability of the hodograph method?Y. topological properties of a particular flowr e\ is

and introduce variables that are most convenient for the pa@ [abel of an individual vortex line, and is an arbitrary

ticular problem. Section IV is devoted to investigation of longitudinal parameter along the line. What is important

simple solutions obtained by the separation of variables i#S that the ~dynamics of the line shap&(w,é.t)

the governing linear equation. =X(v.&1),Y(v,&1),Z(v,£,1)) is determined by the varia-
tional principle

II. LONG-SCALE LOCAL APPROXIMATION 5[f Edt}/ SR(v,£,1)=0,

Existence itself of the ideal-hydrodynamic solutions in the
form of quasi-one-dimensional vortex structufesrtex fila-  with the Lagrangian of the form
ments filling just a small part of the total fluid bulk is
qlosely connected with _the free;mg-m property of the vortex ﬁzf d2v ﬁ; (RexR]-D(R)AE~H{QRY}, (9
lines [1-13. Mathematically, this property is expressed by N
the special form of the equation of motion for the

divergence-free vorticity field2(r,t)=curlv(r,t) where the vector functioB(R) in the case of incompressible
’ Y flows must satisfy the condition
Q.=curlvxQ], 3 (Vg-D(R))=1. (10
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Below, we choos®(R)=(0,Y,0). where the function® andZ depend orx andt, Z=4,Z and
Since we are going to deal with a very thin vortex fila- Z'=4,Z. Having neglected the ternd’? under the square
ment, we will neglect thev dependence of the shapes of root, we sacrifice the correct behavior of perturbations with

individual vortex lines Constituting the filament. By doing Wave|engths of the order of, but instead we obtain an ex-
this step, we exclude from further consideration all the ef—acﬂy solvable system, as it will be shown below.

fects related to finite variable cross section and longitudinal | et ys say a few words about geometrical meaning of the
flows inside the filamerftL6—20. Thus, we consider an “in-  second term in right-hand side of the expressib#). Since
finitely narrow” vortex string with a shapR(¢,t) and witha e study the very long-scale limit, locally the flow under
finite circulation"= [ \d?v. However, the Hamiltonian of consideration looks almost like a two-dimensional flow with

such a singular filament diverges logarithmically, a small vortex at the distancéfrom the straight boundary,
) and the expressionl'¢/4m)In(2Y/a) is just the energy of

r R'(£1)-R'(§2)dé:1dé, such a 2D flow per unit length in the thirdongitudina)

Hr{R(&)}=2— — — o0 - : o , ; )

8 [R(&1)—R(&y)] direction, while the multipliery1+Z'2dx gives the arc

(11 length element in the longitudinal direction.

Now, for simplicity, we take new time and length scales to
In order to regularize this double integral, it is possible, as &atisfy a=1 and I'/2r=1. After that we introduce new
variant, to modify the Green functiofil3]. For example, quantitiesp(x,t)=2Y(x,t) and u(x,t)=d,Z(x,t), and also
instead of the singular functioc«1/r, one can use a the function
smooth function such a6,=1/\r?>+a’ or some other ap-
propriate expression depending on a paramatdt should H(p,u)=F(p) V1+ u?, (15)
be emphasized that relaticd=curl v is exactly satisfied
only in the original nonregularized system, but in the case ofvhere
a finite a it is not valid for distances of ordea from the
singular vortex string. Thus, the meaning of vorticity in regu- F(p)=Inp. (16)
larized models is not so simple, but, nevertheless, rel&@pn
remains valid in any case. Relatively small parametén  The corresponding equations of motion then can be written
regularized models serves to imitate a finite width of vortexin the following remarkable general form:
filament in the usualnonregularized hydrodynamics. The

energy of the string turns out to be logarithmically large, w=0a,Z, (17)
I AR(E) -
MRV~ 5 § |R'<§)|In(T d¢, (12 Gpt xH,lp. 1) =0, 19

. . . : HZ+H,(p,u)=0. (19
whereA (R) is a typical scale depending on a given problem

(in particular, the usual LIA use& = const>a). In our case
we consider two symmetric vortex filaments in the long-
scale limit, when direction of the tangent vector varies

More explicitly, the last two equations are

weakly on a length of ordeY. For such configurations, the pt i F(p)Z =0, (20)
energy concentrated in the half space0 is approximately 2 \/14—ZX2
equal to the following expression:

Z+F'(p)y1+Z:=0. (22)

1'*2
Hr~@fﬁ XZIY 2 Z2In(2Yla)de, (13)

These equations have a simple geometrical treatment. In-
deed, Eq.(21) means if we consider the dynamics of the
This local Hamiltonian is able to provide qualitatively cor- fjjament projection on th&-z plane, then we see an element
rect dynamiCS Of the filament dOWﬂ to |Ongitudinal Scales Ofof the projection moving in the norma| to the projection tan-
orderY where p_erturbations become stable and where NOyent direction with the velocity depending only gnand
locality comes into play. Unfortunately, we do not have agqual toF’(p). Simultaneously, ity direction the element of
simple method to treat the Hamiltoniah3) analytically, that e filament moves with the velocity proportional to the

is why we will consider only very large scalekXY) and  projection curvature multiplied by the functioR(p), as
thus, suppose the slope of the tangent vector to the boundagpown in Eq.(20).

plane to be negligibly smalithis meansY’2§X’2+Z’2). It is interesting to note that an analogous consideration
Then, choosing a longitudinal paramegess simply the Car-  can also give us the long-scale Hamiltonian equations of
tesian coordinate, we have the following approximate La- mpotion for a thin vortex filament in a slab of an ideal fluid
grangian: between two parallel fixed boundaries yt —d/2 andy
=+d/2. One has just to define thevariable by the formula

. T _ - ) .
~ v 2 p=(m/d)y and make substitutiofr(p)—F'“(p), in Eq.
L Ff‘ YZ 47T\/1+Z In(2Y/a){dx, (14) (15) where
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cosp u(p,9)
©(p)=Inl —X - -
F(p)=In ) (22 p=tand, x(p,9) cos9 (27)

whered is the angle in the-z plane betweer direction and
the tangent to the corresponding projection of the vortex fila-
ment. As a result, the relatioi23) and(24) will be rewritten

in the following form

with a small dimensionless parameter

. HODOGRAPH METHOD

It is important for our consideration that any nonlinear

system of the form(17)—(19) can be locally reduced to a - _ Yp (29)
linear equation if we take andu as new independent vari- F"(p) '

ables (this is known as the hodograph transformatiofs

interesting physical examples of systems solvable by this F'(p) )

method, the one-dimensional gas-dynamic isentropic flows X=UyCOoST+| u—- mup) sin, (29
should be mentioned1], with H(p,u)=pu?2+e(p), P

wherep, u, ande(p) are the gas density, gas velocity, and "(p

the internal energy density, respectively. Another example is Z=uysind— ( u— ”—up> cos, (30
a long-wave 1D approximation describing initial evolution of F"(p)

a liquid inviscid column under surface tension before th
formation of dropg27]. The last case formally corresponds
to e(p) = p*2, with p(x,t) being the cross-section area of the

column.
Indeed, as from Eqg17) and (19) we see the relation

dZ=pdx—H,dt,
it is convenient to introduce the auxiliary functii{p, «),
X=Z—xu+tH,, (23
in order to obtain
dy=—xdu+tH,, dp+tH,, du.

From the above expression, we easily derive

Xx=H (24

p
pu X
Hpp

After that we rewrite Eq(18) in the following form:

dpx) ~ dpt) (p,t)
At,x)  HPa(tx)  HFa(tx)

and multiply it by the Jacobia#(t,x)/d(p,u),

dp,X) ap.t)
dp,u)  HPap,u)

opt) _
Halp,w)

Thus, now we have

Xu=Hypty=Hpuut,.

(29

Substitution of relationg24) into this equation and subse-

guent simplification give us the linear partial differential

equation of the second order for the functigtp, x),

(HpuuXoHpp) p= X =0 (26)

As the functionH(p,«) has the special forngl5), it is
convenient to change variables,

(S

and the coefficients of the linear equation for the function
u(p,d) will not depend ond variable,

d [ Flp)
ap

F"(p)
The same is true for the coefficients of the equation deter-
mining the functiont(p,¥)=—u,(p,9)/F"(p),

F(p)t,,+2F (p)t,—F"(p)tyy=0.

Once some particular solution of E@1) is known, then
further procedure consists in the following two steps.

(i) In terms of some parametérfind the curves of con-
stant values of the functiot=—u,(p,9)/F"(p). It is this
point where nonlinearity comes into play, since we need to
solve the nonlinear equation.

(ii) Substitute the obtained expressigns p(¢,t) and ¥
= 9(&,1) into Egs.(29) and(30), and get a complete descrip-
tion of the filament motion, X=X(¢,t), Z=Z(&t), Y
=(1/2)p(&.1).

Thus, the long-scale local approximatiti¥) turns out to
be integrable in the sense that it can be reduced ttirtbar
equation(31). However, the functiom(p,) is multivalued
in a general case. Therefore, statement of the Cauchy prob-
lem becomes much more complicated. Besides, the functions
F(p) and F{9(p) determined by expressiori6) and (22)
result inelliptic linear equations as against the usual 1D gas
dynamics where the corresponding equations wmerger-
bolic. Generally speaking, the ellipticity makes the Cauchy
problem ill posed in the mathematical sense if initial data are
not very smooth. However, in this paper we will not discuss
these questions, instead in the following section we will
present simple particular solutions, which within some time
interval satisfy the applicability conditions for the long-scale
approximation.

up) —(Ugytu)=0. (3D

(32

IV. PARTICULAR SOLUTIONS
A. Separation of the variables

We are going to consider the simplest particular solutions
of Eg. (31) obtainable by separation of the variables

Ur(p,9)=Re{Uy(p)O,\(D)}, (33

066301-4
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where\ is an arbitrary complex spectral parameter,

A=(x+ik)?, k=0, (34

and the functior®, () contains two arbitrary complex con-

stantsC, andC, ,

0,(9)=Cy exf (x+ik)9]+Cy exf — (x+ik)9].
(35

The motion of the vortex filament will be described by the

following formulas:

_ o Ur)
t= Re{ F'(p) ®>\(19)] :

X\ = Re{ U,(p)O,(9)cosd

(36)

F'(p), .,
Ux(p) = Ux(p)

+

0,(9)sin i}} , (37

Z,= Re{ Uy(p)OL(D)sind
F'(p)
F"(p)

The functionU,(p) must satisfy the ordinary differential
equation of the second order

_<U>\(P)_ Ui(p))@)x(ﬁ‘)COSﬁ]- (39

;(Muum)—ml)ux(p):o. (39
PLF"(p)

Let us turn a bit of attention to the special value —1
of the spectral parameter, when the solution of E§) can
be explicitly written for any functior(p),

rF"(p1)dp
F(p1)

whereA_; andB_ are arbitrary complex constants.
At \# —1, it is convenient to deal with the function

U—1(P):A—1j +B_1, (40)

_ U
Ta(p)= F'(p) )

(41)

which satisfies the equation
F(p)TX(p)+2F ' (p)Ti(p)—NF"(p)T\(p)=0. (42

In particular, Eq.(42) is simply solvable ah =0 (this solu-
tion describes the motion of a perfect vortex fing

d
To(p)=Aq f ’ ?ppl)wo. (43
1
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Simple manipulations with formula&6)—(39) allow us
to rewrite the solutions in the following form

ty=Re[T\(p)O\ (D)}, (44)

X, =Re{(A+1) " ~[F(p)Ty(p)]' O} () cosd

+AF'(p)Ta(p) = F(p) Ti(p) 1O (D)sind}},
(45

Z\=Re{(A+1)"H{=[F(p)T\(p)]' O5(I)sind

—[AF'(p)T\(p)—F(p) T (p)]10,(¥)cosd}}.
(46)

B. Real A

Let us first consider real values of the spectral parameter,
N eR, and the corresponding real functioft¥,(9) and
U,(p). SinceF(p)>0, F"(p)<0, we may expect the solu-
tions U, (p) with A>1 to have a large number of oscilla-
tions. In the opposite case, whar< —1, the solutions will
be a linear combination of two functions, one of them being
increasing, and other decreasing. It is sufficient to know
these general properties to get an impression concerning the
geometrical configurations of the vortex filament described
by the formulas(44)—(46). Let us takex = —k? with k>1
and suppose the explicit dependericg.z(p) to be known
and increasing at large. For simplicity, we take® ()
=coskd) and after that resolve the relati¢fd) with respect
to 9,

t
T_2(p)

: (47)

o== !
= *jarcco

Substitution of this expression into formuledb)—(46) gives
us the final form of the solutions as dependen¥egz(p,t)
andZ_,2(p,t),

KF ()T 2(p) TF(p) T ep) [t
X_ep,t) == o1 T o)
(1 % t )
X sIn| —arcco
k T_2(p)
_KF@T e 2 |
k2—1 T 2(p)
X s(l % ! (48)
C0O§ —arcco s
k T_2(p)
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FIG. 1. Solution folx = —9. With positivel” the vortex filament
gets closer to the wall, while for negatiJé the filament moves
away from the boundary.

KF' (0T i(p)+F(p) T a(p) |t

Z_2(p,t)=% k2—1 T_2(p)

et

X cog —arcco
k T_2(p)

KT 1| e |
k2—1 T2,k2(p)

X sin( 1arcco% t . (49)
K T_i2(p)

The p variable in the above expressions varies in the limits

from pin(t), such thatt=T_,2(pmin), to +. The corre-
sponding curve in the-z plane is a smoothed angled
=m(1-1/k) [see Figs. 1 and 2, where for the cds€p)

=In p the filament shape is shown at several time moments,

th+1—t,= const]. Completely different form is obtained at

\=x?, two-branch spiral§see Fig. 3. Let us take® ,2(9)
=exp(v). Then,

; (50

T,2(p)
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FIG. 2. Solution forh=—10, the same time moments as in
Fig. 1.
N t | %°F'(p)T,2(p)=F(p)T a(p)
2\ P, =
T,2(p) x*+1
. t x[F(p)T,2(p)])
Xsinl —In —
% | T,2(p) x+1
1 t
X cog —In : (51)
% | T,(p)
Z ot) t %*F'(p)T,2(p)—F(p)T 2(p)
x2\P>L)= -
P T,2(p) ©+1
1 t x[F(p)T,2(p)]
Xcog —In -
% | T,2p) ©+1
(1 t
X sin| —In . (52
% [ T,2(p)

The variablep runs here between two neighbor zeros of

the functionT ,2(p) and approaches these values at two loga-
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19000 ' — quUR (@) +(1+qU(a@)+(1+M)Ux(a)=0.  (56)
t
10000 { A=3 General solution of Eq(56) is representable by the Laplace
method [28] as an arbitrary linear combinatioA, I5'(q)
5000 Itha/tql = 1/2 . +B,15(q) of two contour integrals in a complex plane,
N = U= p \MlePidp
M 2m +1
-5000 / i m A\P P
N+1A4pq
p e’dp
-10000 | ] +Bxf 571 (57)
t4 3.305< In(2Y/a) <7.759 5\ P P
100 0000 15000 10000 -5000 0 5000 10000 15000 20000  Here, the first closed contoud goes around the points,
X/a =0 andp;=—1. The second contouf is not closed, at
positiveq it starts at Rp= —o°. If ReA<0, then contoui3
15000 ' ' ' ' ' ' ends atp,, but if Re&\=0, then its end point will bg,. In
both cases, at the end point of the cont@ rthe integrand
10000 2=6 l multiplied by p(p+1) tends to zero.

It is interesting to note that at the integer values of the

Itrt/tal = 1/2 ; parametei, the integral'(q) can be expressed in terms of
polynomials:

5000

N 0
1 A1 gpdg
=5 § (= -
-5000 A 2 J4\p+1 p
-10000 | § d \I\-1 qm—l
3.877< In(2Y/a) <6.919 1+ E) (|7\|T)' AN=—1-2,...;
15000 1 1 1 1 1 1 ’
-20000 -15000 -10000 -5000 O 5000 10000 15000 20000 L d Nt
X/a e ﬁ_l NE A=0,12... .
FIG. 3. Two-branch spirals. The filament projection is presented (58)

here for several negative time moments before a finite singularity,

or for positive time moments after an initial singularity, depending These expressions have been used to prepare Figs. 1-3

on the direction of the vorticity. where the vortex filament shape correspondingUtg(q)

_ . . =1:4(q) is drawn for several moments of time. It is easy to

(%) () - A - . . -

rithmic branches of the spirgh™ <p<pj%’y . Itis interest-  go0 4t ot sufficiently large times the spirals satisfy the con-

ing to'note that the f_eatures §|mllar to su.ch spirals as in Fidditions (a), (b), and(c), which have been formulated in the

3, typically develop in numerical simulations of vortex fila- \yyoqyction. As to the angle-shaped configurations, the con-

m_en'Fs(see, for example, Fig. 10 in the paper by Pumir anddition Y'2<X'2+7'2, generally speaking, is not satisfied at

Siggia[16]). q=k?, since at very largg (on the asymptotes of the angle
the growth of Y[ ~exp()] is faster than growth oX and

Z[~U_kz(q)~qk2‘1]. Therefore, if we take a particular so-
For further investigation, let us substitf¢p)=Inp into  lution u=U _,2(q)coskd) separately, not as a term in a

C. The caseF (p)=Inp

Egs.(36)—(39), and change the variable more complex linear combination, then we have to deal only
with large k, and consider only the pieces of the filament
q=Inp. where 2. .. 3<q<k?.

As a result, we will obtain the following: D. The caseF (p)=p® a

t,=Re{elU] ()0, (D)}, (53 In Ref.[13], we investigated another regularization of the
Hamiltonian functional which corresponds E{p)=p“/ «,
X, =Re[U,(q)0,(9)cosd with some small positive parameter That time we did not
see applicability of the hodograph method and therefore, we
+[Uy(a) +U ()]0, (9)sin I}, (54)  were able to find only few particular solutions. Now it has
been made clear that in this case, a simple substitution exists
Z,=Re{U,(q)0,(9)sind that reduces the problem to 2D equatibdsf +f=0. Thus, it
becomes possible to present a very wide class of solutions of
—[Ux(@)+Ux()]10,(9)cosd}, (55 the equation

066301-7
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pztpp-i- 2apt,+a(l—a)ty,=0 (59

PHYSICAL REVIEW E 67, 066301 (2003

s(s—1)+2as+ a(l—a)\=0. (65)

as linear combinations of singular fundamental solutionsThus,

(which are expressed through the McDonald functitg)

and regular exponential or polynomial solutions. Indeed, by

the substitutions

I=dVa(l—a),

t=ell# 9 (q,¢),
(60)

p:eq,

Eq. (59 is reduced to the following equation with constant:

coefficients,

faqtfoe— (12— a)?f=0. (61)

As it is well known, the fundamental solutions of this equa-

tion have the form

N(Q—do)*+ (¢p— ¢>0)2),
(62

f(qyﬁb;%:ﬁﬁo):Ko(

E—a

s.(N\)=1/2—a*(1/2— a)>—a(l—a)\.  (66)
It should be mentioned that the solutions presented in Ref.
[13] correspond to the particular case-s=2.

V. CONCLUSIONS

In this paper, an approximate exactly solvable nonlinear
model has been derived to describe unstable locally quasi-2D
ideal flows with a thin vortex filament near a flat boundary.
The Hodograph method has been applied and some particu-
lar solutions have been analytically found by separation of
variables in the governing linear partial differential equation
for auxiliary functionu. More general solutiong(p,9) can
be obtained as linear combinations of the tert®3) with
different \, but only in few cases will it be possible to re-
solve analytically the dependence=—u,(p,9)/F"(p).

where q, and ¢, are arbitrary parameters. Therefore, Eq.However, this procedure can be performed numerically.

(59) has particular solutions

\/

p
In—

2 _ 2
L (9= ) (63
Po

a(l—a)

1
t:pl/Z—aKo( ‘E_a

Though we derived the exactly solvable model under sev-
eral restrictive simplifications, the solutions obtained in this
work promise benefit in many aspects. For instance, they
may serve as basic approximations in future for more ad-
vanced analytical studies that will take into account the ef-

It is interesting to note that a¥=1/2, the system pos- fects of nonlocality and/or finite variable cross section of the
sesses a conformal symmetry. A deep reason of this symmélament, as well as surface waves in the case of free bound-

try is not clear yet.

ary.

As concerning separation of the variables, the function

Ty\(p) in Egs.(44)—(46) is given by the expression

Ta(p)=Alp> M+ AL ps- O, (64)
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